Northern Arizona University 2015 Concrete Canoe Design Report

Dreadnoughtus

Table of Contents

Executive Summary $i i$
Project Management 1
Organizational Chart 2
Hull Design and Structural Analysis 3
Development and Testing 5
Construction 7
Project Schedule 9
Design Drawing 10
List of Sigures
Figure 1: Allocation of Resources 1
Figure 2: Allocation of Hours 1
Figure 3: Prolines Hull Model 3
Figure 4: Moment Envelope 3
Figure 5: RISA 2-D Simply-Supported Beam 4
Figure 6: Transverse Free-Body Diagram 4
Figure 7: Post-Tensioning System 4
Figure 8: EkkoMAXX ${ }^{\mathrm{TM}}$ Trend 5
Figure 9: Spray Testing 6
Figure 10: Shrinkage Testing 6
List of Jables
Table 1: Canoe Specifications $i i$
Table 2: Concrete Properties $i i$
Table 3: Critical Path Tasks 1
Table 4: Registered Participants 2
Appendices
Figure 11: Third Point Loading Test 6
Figure 12: Button-Stop System 6
Figure 13: Foam Male Mold 7
Figure 14: Post-Tensioning Net 7
Figure 15: 3-D Elements 7
Figure 16: Shotcrete Spray Method 7
Figure 17: Mold Sections 8
Figure 18: Canoe Layer Details. 8
Figure 19: Post-Tensioning with Inline Force Gauge 8
Figure 20: Curing Enclosure 8
Table 5: Mentee Involvement 2
Table 6: Prolines NAU Canoe Comparison 3
Table 7: Aggregate Properties 5
Table 8: Reinforcement Options 6
Appendix A - References A-1
Appendix B - Mixture Proportions B-1
Appendix C - Bill of Materials C-1
Appendix D - Example Structural Calculations D-1

Executive Summary

Northern Arizona is known for its many natural wonders. From the heights of the San Francisco Peaks, to the depths of the Grand Canyon, from the colorful splendor of the Petrified Forest, to the powerful, lonely spires of Monument Valley, the beauty of this region is apparent. Northern Arizona is also known for its rich history of fossils, including those of dinosaurs. Dreadnoughtus schrani, discovered in Patagonia, Argentina, and

Table 1: Canoe Specifications

Canoe Name: Dreadnoughtus		
Dimensions	251.0 -in	
Length	13.0 -in	
Maximum Depth	27.0 -in	
Maximum Beam/Width Avg. Wall Thickness	0.5 -in	
Weight (est.)	180 -lbs	
Reinforcement		
Fiberglass Mesh		
Cost-tensioning Cables	Fibers	
Stain Color	Tan, Blue, Green	

NAU is located at 7,000-ft above sea-level in the picturesque mountain town of Flagstaff, at the base of the $12,000-\mathrm{ft}$ San Francisco Peaks. Founded in 1899, NAU counts over 23,000 undergraduates and 351 Civil Engineering students among its student population spread over seven colleges.

NAU competes in the Pacific Southwest Conference (PSWC), which is considered by many to be the most competitive conference in the nation. It consists of 18 schools from Arizona, California, Nevada, and Hawaii. NAU's placement in the canoe competition at PSWC has included $10^{\text {th }}$ place in 2012, a move up to $6^{\text {th }}$ in 2013, and a $13^{\text {th }}$ place ranking in 2014.

Sustainability was a major focus for this year's team. Reuse and environmental impact was considered during every design decision. The team investigated, found, and was approved for the use of a 100% fly ash based cement. EkkoMAXX ${ }^{\text {TM }}$ cement by CeraTech not only

Table 2: Concrete Properties	
Structural Mix	
Plastic Unit Weight	65.5-pcf
Dry Unit Weight	57.4-pcf
28 Day Compressive	2,150-psi
Strength	225-psi
28 Day Tensile	725-psi
Strength	Patch
28 Day Flexural Strength	Mix
Plastic Unit Weight	60.2-pcf
Dry Unit Weight	52.1-pcf
28 Day Compressive Strength	1000-psi

This year, Dreadnoughtus was cast using a shotcrete/spray method for the first time in NAU's history to increase construction speed and to improve quality control. This method reduced pour day man-hours significantly compared to previous years. The team incorporated post-tensioning for only the second time in school history. The hull design used this year is longer and narrower than previous NAU canoes and presents a balance of speed, stability, and maneuverability (Table 1). A primary goal of our concrete design was to significantly reduce the unit weight, compared to last year's 98-pcf mix (Spirit). The results of this intensive concrete design process can be seen in Table 2. A wet concrete polishing system was also used for the first time to dramatically improve the final finish of Dreadnoughtus.

Many hours were committed to this challenging and rewarding project, and while NAU has only a small group of dedicated students and a small budget, we have created a beast. Dreadnoughtus is ready to compete with nothing to fear!

Wroject Management

The project manager set the objective to apply the "Fear Nothing" principle across the entire project and to improve on the past success of NAU teams. Future teams will benefit from the established project framework and the improved equipment and practices. This program focused on maximizing sustainability and improving construction, structural analysis, concrete mix design, reinforcement design, safety, and paddling performance.

Initial project planning began over the summer, and it was quickly determined that past canoe budgets of approximately $\$ 2-3,000$ would not be able to support the desired improvements. An increased fundraising campaign was implemented. As a result, over $\$ 6,000$ was directly raised. Combined with additional donations of materials, the team was equipped with the resources to enact the

Figure 1: Allocation of Resources desired changes. The allocation of these resources is shown in Figure 1.

The team consisted of five members and four mentees. The mentee program, in its second year, allows a group of students to shadow the project, help out, and potentially be leaders on the following year's canoe team. Three members of this year's team were previously mentees. Because of the team's small size, efficient management of time and resources were critical. A project schedule was created in early September and twiceweekly meetings ensured that critical tasks were on schedule and appropriately supported. Over 2 weeks of float were built into the schedule to account for unknown complications. Major milestones and principal critical path tasks are found in Table 3.

Table 3: Critical Path Tasks

Critical Path Activities	Variance	Reason
Hull Design	None	Proper Planning
Mix Design Finalized	+3 Weeks	Additional Testing
Mold Completion	None	Proper Planning
Canoe Casting	+3 weeks	Additional Testing

A total of 2437 man-hours (Figure 2) were needed to complete Dreadnoughtus. This is 562 hours more than Spirit and reflects time needed to implement significant changes.

Our quality control and safety officer ensured that each team member completed safety training courses, reviewed all necessary Material Safety Data Sheets (MSDS), and was equipped and properly using required personal protective equipment (PPE). As a result of this safety program, no reportable injuries occurred during this project. Quality Assurance/Quality Control (QA/QC) was achieved through constant checks of calculations by outside sources, tests of systems and materials to confirm results and practicality, and proper training in construction procedures. Maintaining a clean working environment and providing standard operating procedure training for all tools helped to keep the project on schedule and safe. Team members were assigned specific tasks to help regulate quality, and constant checks were performed to verify the desired objectives were being achieved. This allowed the team to be more efficient and produce a high quality canoe.

Organizational Chart

Project Manager

Jeremy DeGeyter

Directed project and delegated tasks. Responsible for budget planning, fundraising, mold construction, material procurement, and paddling program. Assisted other tasks as needed.

Matt Snyder

Conducted structural analysis on hull using hand calculations and computer programs. Selected and analyzed hull design.

Reinforcement Design Lead

Cynthia Alvarez
Researched, tested and selected reinforcement. Designed post-tensioning system.

Concrete Design
Lead
Kristin Van Sciver
Researched materials and
Testoped mix designs.
properties.

Developed safety plan, provided and checked PPE usage compliance. Designed transportation unit.

Table 4: Registered Participants

Name	Class	Years Participating	Registered Participant, Yrs.
Jeremy DeGeyter	Senior	4	3
Kristin Van Sciver	Senior	3	3
Matt Snyder	Senior	1	1
Ramon Aguilar	Senior	2	1
Cynthia Alvarez	Senior	2	1
Jacob Hood	Senior	1	1
Chelsie Kekaula	Junior	1	1
Emily Melkesian	Junior	1	1

Table 5: Mentee Involvement
Name
Tasks

Chelsie Kekaula	T-shirt Logo
Emily Melkesian	Paddling
Evan Kaichi	Construction
Brent Lipar	Display
Jacob Hood	Paddling, Construction

§ull Design and Struetural Analysis

In order to structurally "Fear Nothing," hull design decisions had to start from scratch. The team completed extensive research on hull handling characteristics and past top performing concrete canoes. Seminars with canoe experts were arranged, and seven different canoes were tested in the field. The team determined that a long canoe with a round-bottom and moderate rocker has tracking and speed for straight-a-ways, as well as the maneuverability

Figure 3: Prolines Hull Model required to slalom and make 180° turns. The hull envisioned was akin to the NAU 2011 Concrete Canoe, Ponderosa, which still remains with NAU today. During Concrete Canoe Competitions of 2009-2012, all participants were required to use a standardized hull shape which featured a relatively long canoe with flared sides, a round bottom, and moderate rocker. Ponderosa was $20-\mathrm{ft}$ long and 31-in wide. Using Ponderosa as a benchmark, Dreadnoughtus was designed to be faster while sacrificing some stability by having a length of 21ft and a maximum width of $27-\mathrm{in}$. The rocker increased slightly at $5-\mathrm{in}$ at bow and $3-\mathrm{in}$ at stern. Having the ability to practice races in Ponderosa during construction of Dreadnoughtus supported the team's final hull decision.

Using the hull design program Prolines, the team modeled Dreadnoughtus (Figure 3) and conducted hydraulic analyses to determine speed, drag, stability, and waterline (Table 6). Prolines revealed Dreadnoughtus as being the fastest NAU canoe in the past four years. Dreadnoughtus traded

Table 6: Prolines NAU Comparison

Parameter	Scenario	Dreadnoughtus (2015)	Night Fury (2013)	Ponderosa (2011)
Waterline	2-Person	5.5	8.5	5.1
(in)	4-Person	8.6	11.6	7.52
Optimal	2-Person	5.4	4.8	5.0
Speed (knots)	4-Person	5.6	5.0	5.5
Righting	2-Person	0.34	0.22	0.47
Arm (ft)	4-Person	0.14	0.05	0.25

The team completed preliminary 2-D stress analyses first so concrete design could begin. Two bending scenarios were accounted for: longitudinal bending between two paddlers and transverse folding where paddlers are located. Dreadnoughtus was designed to have reinforcements acting in both directions: ribs and reinforcement mesh for transverse strength and posttensioning for longitudinal resistance. For bending stress calculations, a simplified rectangular crosssection was used to find centroid and moment of inertia. The longitudinal bending analysis was modeled as a simply-supported beam. The longitudinal moment envelope is shown in Figure 4.

Figure 4: Moment Envelope

RISA 2-D was utilized to investigate different paddler orientations and loading scenarios (Figure 5). The transverse stress was estimated by considering a free-body diagram of a simplified rectangular section with triangular distributed loads pushing inwards on the sides to represent the waterline in the four-person scenario (Figure 6). A one inch section cut was taken to estimate the maximum transverse moment is $4-\mathrm{lbin} / \mathrm{in}$. Applying principles from Reinforced Concrete classes and following the ACI 318-11 design code, singly and doubly-reinforced sections were analyzed. By adding one layer of reinforcement, the flexural capacity is $30-$ $\mathrm{lbin} / \mathrm{in}$. The factor of safety of 7.5 is conservative because the

Figure 5: RISA 2-D Simply-Supported Beam

Figure 6: Transverse Free-Body Diagram actual transverse moment experienced will be greater than the 4-lbin/in approximation.

Ribs were not required for strength, but for aesthetic display and conservatism, life-like dinosaur bone ribs were incorporated. Ribs were sized using T-Beam construction methods by guessing rib sizes and calculating the effective overhanging flange width from the canoe geometry. By adding 3 -in by 0.5 -in ribs, the flexural factor of safety increased an additional 3.5 at paddler locations. Dreadnoughtus will experience an estimated maximum of $340-\mathrm{psi}$ of compression and $120-\mathrm{psi}$ of tension in the longitudinal direction and $74-\mathrm{psi}$ of compression and $92-\mathrm{psi}$ of tension in the transverse direction. Our concrete compressive strength of $2150-\mathrm{psi}$ and tensile strength of 225-psi is sufficient for this loading. Detailed calculations are shown in Appendix D. The conservation safety factors are to account for cross-section approximations, unknowns such as the de-molding process, and collisions.

The "Fear Nothing" initiative took on the challenge of post-tensioning because it is an effective way to reinforce concrete and has been done only once in NAU concrete canoe history with mixed results. The posttensioning system (PTS) was designed by following methods from the Post-Tensioning Institute's (PTI) PostTensioning Manual.

The PTS (Figure 7) provides 690-lbs of axial compression to increase the flexural cracking load. The team decided six galvanized steel tendons would work best in the cross-section geometry. Each tendon was spaced symmetrically about the centroid to reduce eccentric loading. AutoCAD was used to locate the centroid of each cross-section. The tensile stress in
Dreadnoughtus was limited to $3 \sqrt{f^{\prime} c}$ when fully loaded, a conservative value for post-tensioning. While a fully loaded 0-psi tensile stress was desired, the team restricted the stresses because

Figure 7: Post-Tensioning System the PTS would require more tension then the team felt comfortable putting into the canoe. As result, each strand was designed to have 115 -lbs of tension versus 447 -lbs in the ideal 0 -psi system.

To achieve the desired 115-lbs per wire, each wire was over-tensioned to account for post-tension losses. The initial losses considered were friction, seating, and elastic shortening of the concrete. Time dependent losses considered were shrinkage of the concrete. $15-\mathrm{lbs}$ of anchorage seating loss, $10-\mathrm{lbs}$ of friction loss, and $13-\mathrm{lbs}$ of elastic shortening was estimated using PTI equations and constants. After the tensioning system was experimentally verified, $35-\mathrm{lbs}$ of additional seating loss (button-stopper slippage) occurred from limited swaging space. EkkoMAXX ${ }^{\text {TM }}$ cement has very little shrinkage compared to Portland cement. Dreadnoughtus shrank 0.08 inches in length over 28-days, resulting in PTS loss of 2-lbs per cable versus 9 -lbs per cable if using Portland cement. The first tendon was tensioned to $190-\mathrm{lbs}$ and each subsequent tendon after was tensioned 2.5 lb less to account for elastic shortening losses.

Development and Jesting

The focus for Dreadnoughtus was on sustainability. Two alternatives to Portland cement were researched: EkkoMAXX ${ }^{\text {TM }}$ cement from CeraTech and Geopolymer concrete. Geopolymer concrete was removed from consideration since it is not commercially available yet and requires harsh chemicals. EkkoMAXX ${ }^{\mathrm{TM}}$ has similar strength and rheological characteristics to typical Portland cement. The lightweight aggregates considered for use in this year's mix were Poraver® P051, 3M K1 and S32 Glass Bubbles, White Pozzolans (VitroMinerals), and Cenospheres. To decrease waste, surplus materials: Poraver® P051 and 3M K1 Glass Bubbles from past NAU canoes were selected.

EkkoMAXX ${ }^{\mathrm{TM}}$ is a "carbon neutral cement technology" which "utilizes a non-portland, activated fly ash system" (CeraTech 2014). EkkoMAXX ${ }^{\text {TM }}$ provides a "green" alternative to the traditional Portland cement since it is 100% fly ash based. EkkoMAXX ${ }^{\mathrm{TM}}$ is also commercially available and ready to work with as soon as it is received. The two proprietary liquid additives used in conjunction with EkkoMAXX ${ }^{\mathrm{TM}}$ have insignificant hazards based on the National Fire Protection Association (NFPA) hazard rating system. These additives help to chemically control the set time and strength development. EkkoMAXX ${ }^{\mathrm{TM}}$ has not been used in previous concrete canoes.

When utilizing the K1 Glass Bubbles, the resulting compressive strength was not as high as desired ($250-\mathrm{psi}$ to $1485-\mathrm{psi}$) when in the desired range of unit weights ($50-\mathrm{pcf}$ to $70-\mathrm{pcf}$). S 32 bubbles were selected as an alternative since they had an increased isostatic crush strength of 2000-psi compared to 250 -psi for the K1 bubbles (Table 7). This increased crush strength nearly doubled the compressive strength of the concrete mixes but only slightly increased the unit weight. Both Poraver® ${ }^{\circledR}$ and S32 Glass Bubbles are smaller than 1mm , creating a finish that allows for easy sanding and smoothing. Prior to the mixing, the aggregates were saturated-surface-dry. The only chemical admixture used in the concrete mix was the air entraining liquid (AEA) MasterAir AE 90. Another additive to the concrete mix was MasterFiber M 100 Individual Fibers. The 0.75 -in long fibers, made of monofilament homopolymer polypropylene, increase crack resistance of the concrete.

Table 7: Aggregate Properties

Material	Poraver®	S32 Glass Bubbles 520 2F5
Size (mm)	$\begin{aligned} & 0.50 \text { to } \\ & 1.00 \end{aligned}$	0.105
Specific Gravity	0.44	0.32
Absorption (by Mass)	20\%	1\%
Isostatic Crush Strength (psi)	290	2000
Volume in Mix	36\%	22\%

A total of 25 mixtures were developed and tested in order to determine the optimum use of the selected materials for various ASTM industry standard tests. The developed mixes varied the proportions of AEA, Poraver®/S32, and EkkoMAXX ${ }^{\mathrm{TM}}$ one at a time while holding other constituents constant. The ideal amount of AEA for our mix was determined to be 3 -oz/cwt. When comparing the aggregates only, the best ratio of light weight to compressive strength was a mix where Poraver® made up approximately twothirds of the aggregate volume, and the S32 Glass Bubbles made up one-third of the aggregate volume. The amount of EkkoMAXX ${ }^{\text {TM }}$ was adjusted until a sufficient compressive strength was reached according to ASTM C319 methods. During this adjustment process, a trend appeared (Figure 8) where unit weights that fell below 60-pcf had compressive strengths ranging from 300 to $1000-$ psi and those above $60-$ pcf ranged from 1500- to $2200-$ psi. This trend occurred when using both the K1 and the S32 glass bubbles. Based off this trend, our concrete required a density greater than 60-pcf to reach a minimum of 1200 -psi.

Figure 8: EkkoMAXX ${ }^{\mathrm{TM}}$ Trend

A spray test for each mix developed was performed by modeling the side of our mold with leftover materials (Figure 9). A desired slump of 6 to 8 -in was identified through these tests (ASTM C1611). Shrinkage was tested (Figure 10), with a 1-in x 1-in x 10-in bar mold (ASTM C157). The shrinkage for the final mix was found to be 0.03%, which was less than the 0.05% observed in the same mix using Portland cement. The final mix selected (Appendix B) provides a 28 -day compressive strength of $2150-\mathrm{psi}$ and a $65.5-\mathrm{pcf}$ plastic unit weight, as determined according to ASTM C138. A decrease to 57.4-pcf was demonstrated with oven-dried cylinders. The final mix had an air content of 2.8% (ASTM C138) and tensile strength of 225-psi (ASTM C496).

To further the sustainability initiative, reinforcement was selected from left-over NAU materials while considering one material from an outside source, TriAx Geogrid (TX140). The team tested four materials, shown in Table 9, for tensile strength and elongation using an Instron 3885 H screw driven machine. Glasgrid Pavement Reinforcement System was the strongest and elongated the least but had poor workability because of its size and high percent open area (POA). Parex Glass Fiber Reinforcing Mesh was

Table 8: Reinforcement Options					
Material	TriAx Geogrid (TX140)	Parex Glass Fiber Reinforcing Mesh	Glasgrid Pavement Reinforcement System	Dryvit Reinforci ng Mesh	
Strength (lb-ft/in)	72	135	181	102	
Elongation (in)	0.62	0.08	0.04	0.07	

The flexural strength of the composite concrete and reinforcement was tested with a third point loading test similar to ASTM C78/C78M (Figure 11). This test was conducted by applying a gradual load until failure for the four samples. The modulus of rupture of the composite material was found to be 725 -psi. Development lengths of the reinforcement were tested to determine the required overlap length at splices. Three different samples were created with varying development lengths of two, four, and six inches. It was determined that the three different development lengths were sufficient to meet application needs because they all failed in the reinforcement rather than pulling out. Although a two inch overlap was successful, a four inch overlap was chosen due to uncertainties in overlap length where actual failure might occur.

Two post-tensioning systems were selected for testing. Using a turnbuckle and pull-force gauge, a single ballshank system and button-stop system were tested by putting a tendon in tension, swaging both ends, and observing the losses that occurred after releasing the turnbuckle. Initial tests showed that the single ball-shanks were difficult to swage and would break if swaged too much. Additional testing showed that using two buttonstops would eliminate approximately 50% of the slippage losses experienced using only one button-stop. The button-stop system was selected and two button-stops were used at the live end to minimize slippage losses due to the difficulty of swaging in a tight area (Figure 12). The dead end received one button-stop because proper swaging could occur.

Constcuction

The Dreadnoughtus hull shape is most closely related to Ponderosa (2011), which was constructed in a wood strip female mold. The most recent canoe to incorporate post-tensioning was Night Fury (2013) which experienced constructability difficulties installing and tensioning the system within their wooden female mold. Dreadnoughtus decided to use a male foam mold (Figure 13) to ease posttensioning implementation and to save time on mold construction compared to the labor intensive process to create a wood strip mold.

The canoe is post-tensioned with six steel wires threaded through nylon tubing. A post-tensioning "net" (Figure 14) was created by wrapping the nylon encased steel tendons with thin wire at regular intervals creating a net that could be draped over the canoe mold placing the tendons at the correct spacing. This year 3-D elements were incorporated into the canoe. Two dinosaur fossil models were built into the bulkheads and dinosaur rib bones were cast for the four structural ribs (Figure 15). These elements were created using silicone molds that had been cast from the desired shapes. This is the first time NAU has incorporated such features.

On pour day, concrete mixing was done constantly to prevent any cold joints from occurring between layers. Concrete mixes were pre-batched to reduce the chance of batching errors on pour day. QA/QC tests were performed on each batch to ensure slump and other critical properties were correct. Form release oil was brushed onto the mold to prevent the concrete from bonding with the mold and to help the demolding process. A shotcrete/spray method was used for the first time in NAU history (Figure 16) to increase concrete placement speed, while also ensuring that a consistent thickness of concrete was applied. Previous teams had experienced quality control issues with large groups of people applying concrete in varying thicknesses and this year's team sought to avoid this problem. This method also limited the number of person-hours needed on pour day and ultimately saved time and improved the quality of the final product. While Spirit took over 12-hrs to construct on pour day with a team of around 20-people, Dreadnoughtus was cast in less than 10 -hrs with around 10-people. Two pour day walkthroughs were conducted in the week leading up to pour day to ensure that everyone was familiar with the construction process and techniques in advance.

The previous four NAU concrete canoe teams have used female wood strip molds. This year a male foam mold was used primarily to make post-tensioning installation easier. The foam mold was created in house by printing canoe cross sections, transferring these dimensions to plywood and cutting out the shapes needed for our canoe. Using a hot wire cutter, foam was cut between two wooden cross sections and glued together to create the male mold. Steel stands were built that allowed the canoe mold to be rotated to multiple angles and a wooden strong back or platform was constructed to support the canoe mold. The mold was secured to the strong back so the canoe could not shift during pour day. The foam mold was assembled in four sections to facilitate removal after the canoe was cast (Figure 17), and these sections were covered with shrink-wrap to provide a smooth interior surface. This covering allowed the mold to be removed after pour day without having to destroy it and makes the mold reusable for future canoe

Figure 13: Foam Male Mold

Figure 14: Post-Tensioning Net

Figure 15: 3-D Elements

Figure 16: Shotcrete Spray Method
teams. Gunwale edges were formed using $1 / 2$ in PVC piping cut to create a semicircular cap. Wood and metal forms were constructed to shape the bow and stern ends.

Bulkheads were wrapped with the Parex Reinforcement prior to pour day and were among the first items installed. 12-in strips of Parex were installed at each structural rib location and all reinforcement was pre-cut to speed installation on pour day. Canoe layer details can be seen in Figure 18. Seven days after the construction was completed, Dreadnoughtus was post-tensioned. The six tendons were tensioned in a star pattern, similar to tightening a car tire, to minimize unbalanced bending stresses. The first cable was tensioned to 190 lbs , the second to 187 lbs , and so on to account for elastic shortening of the canoe while the load was applied. After losses and shortening, an estimated $115-\mathrm{lbs}$ of tension remained in each cable. Jacking force was measured directly with an inline force scale (Figure 19).

Figure 17: Mold Sections

Immediately following final finishing on pour day, an evaporation retarding membrane was applied and a curing enclosure was built around the canoe (Figure 20). Two humidifiers were placed inside the plastic enclosure and filled twice daily to maintain a humidity of 99% for 14 days. The day after casting, the mold was released from the strong back and a foam key was removed from the center of the mold allowing the canoe to shrink unrestrained. Previous teams have experienced problems with cracking as the canoe was restrained
 from shrinking during curing. The 14 -day moist cure was followed with a gradual transition to air curing, where humidity levels were slowly reduced and finally removed altogether.

Once initial curing was complete and the mold removed, finishing commenced. Using sanders and diamond polishing equipment, the canoe surface was smoothed and prepared for staining. Solid color and semitransparent acrylic concrete stains were used to decorate the canoe. Two layers of a cure-sealing compound were used to provide the glossy finish and to reduce water absorption.

Throughout the construction of the canoe, safety was a primary goal. A safety briefing with all participating members was conducted at the start of pour day. During this briefing proper PPE usage, such as safety glasses, masks and gloves was emphasized. The safe and proper use of all equipment was demonstrated. Everyone had to be aware of their surroundings to prevent any injury. Because of this attention to safety, this project was completed with no injuries.

Figure 19: Post-Tensioning with Inline Force Gauge

Figure 20: Curing Enclosure

Design Orawing

Appendix A-References

American 3M Center (2013). Technical Data Sheet, 3M ${ }^{\text {TM }}$ Glass Bubbles K Series, S Series and iM Series < http://multimedia.3m.com/mws/media/91049O/3m-glass-bubbles-k-s-and-im-series.pdf> (Sep. 15, 2014)

American Concrete Institute (ACI) Committee 318 (2011). "Building Code Requirements for Structural Concrete and Commentary," (ACI 318-11), American Concrete Institute, Farmington Hill, MI.

ASCE/NCCC. (2014). "2015 American Society of Civil Engineers ${ }^{\circledR}$ National Concrete Canoe
Competition ${ }^{\mathrm{TM}}$: Rules and Regulations."
<http://www.asce.org/uploadedFiles/Membership_and_Communities/Student_Chapters/Concrete_Cano e/Content_Pieces/nccc-rules-and-regulations.pdf> (Sep. 10, 2014).

ASTM (2011). "Standard Performance Specification for Hydraulic Cement." C1157/C1157M-11, West Conshohocken, PA.

ASTM (2010). "Standard Specification for Air-Entraining Admixtures for Concrete." C260/260M-10a, West Conshohocken, PA.

ASTM (2011). "Standard Specification for Blended Hydraulic Cements." C595/C595M-11, West Conshohocken, PA.

ASTM (2011). "Standard Specification for Chemical Admixtures for Concrete." C494/C494M-11, West Conshohocken, PA.

ASTM (2008). "Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete." C618-08a, West Conshohocken, PA.

ASTM (2011). "Standard Specification for Concrete Aggregates." C33/33M-11a, West Conshohocken, PA.

ASTM (2010). "Standard Specification for Fiber-Reinforced Concrete." C1116/C1116M-10a, West Conshohocken, PA.

ASTM (2011). "Standard Specification for Latex and Powder Modifiers for Hydraulic Cement Concrete and Mortar." C1438-11a, West Conshohocken, PA.

ASTM (2011). "Standard Specification for Liquid Membrane-Forming Compounds Having Special Properties for Curing and Sealing Concrete." C1315-11, West Conshohocken, PA.

ASTM (2011). "Standard Specification for Portland Cement." C150/C 150M-11, West Conshohocken, PA.

ASTM (2011). "Standard Terminology Relating to Concrete and Concrete Aggregates." C125-11b, West Conshohocken, PA.

ASTM (2007). "Standard Test Method for Density, Relative Density (Specific Gravity), and Absorption of Fine Aggregate." C128-07a, West Conshohocken, PA.

ASTM (2010). "Standard Test Method for Density (Unit Weight), Yield, and Air Content (Gravimetric) of Concrete." C 138/C 138M-10b, West Conshohocken, PA.

ASTM (2011). "Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens." C496/C496M-11, West Conshohocken, PA.

ASTM (2004). "Compressive Strength of Cylindrical Concrete Specimens", C 39/C 39M-01, West Conshohocken, PA.

Cenostar (2013). CenoStar Ceramic Microspheres: General Product Information and Specifications. < http://cdn.shopify.com/s/files/1/0235/5803/files/Cenospheres_MSDS_EU_6.18_1.pdf?696> (Sep. 16, 2014)

CeraTech (2012). CeraTech EkkoMAXX ${ }^{\text {TM }}$: General Product Information and Specifications. < http://www.ceratechinc.com/Content/PDFs/ekkomaxx\ Green\ Concrete\ MSDS.pdf> (Sep. 13, 2014)

Northern Arizona University, Concrete Canoe (2011). "Ponderosa." NCCC Design Paper, Northern Arizona University, Flagstaff, AZ.

Northern Arizona University, Concrete Canoe (2013). "Night Fury." NCCC Design Paper, Northern Arizona University, Flagstaff, AZ.

Northern Arizona University, Concrete Canoe (2014). "Spirit." NCCC Design Paper, Northern Arizona University, Flagstaff, AZ.

Poraver North America (2011). Technical Data Sheet, Various Poraver® Granular Sizes, < http://catalog.agsco.com/Asset/PoraverTech(eng).pdf> (Sep. 15, 2014)

Rachel Ewing. (2014). "Drexel Team Unveils Dreadnoughtus: A Gigantic, Exceptionally Complete Sauropod Dinosaur." < http://drexel.edu/now/archive/2014/September/Dreadnoughtus-Dinosaur/> (Feb. 13, 2015).

Vitro Minerals (2013). "VCAS" White Pozzolans." < http://www.vitrominerals.com/wp-content/uploads/VCAS_White-Pozzolans-TDS-150129.pdf> (Sep. 16, 2014).

Appendix \mathfrak{J} - Mixture $1 \mathbf{1}$ roportions

Mixture ID: Structural Mix				Design Proportions (Non SSD)		Actual Batched Proportions		Yielded Proportions	
Y_{D}	Design Batch Size (ft^{3}):		1						
Cementitious Materials			SG	Amount ($\mathrm{lb} / \mathrm{yd}^{3}$)	Volume (ft ${ }^{3}$)	Amount (lb)	Volume (ft ${ }^{3}$)	Amount (lb/yd ${ }^{3}$)	Volume $\left(\mathrm{ft}^{3}\right)$
CM1	EkkoMAXX ${ }^{\text {TM }}$ (Flyash)		2.78	1040.83	6.00	38.55	0.222	1056.71	6.092
Total Cementitious Materials:				1040.83	6.00	38.55	0.22	1056.71	6.09
Fibers									
F1	MasterFiber M 100 (0.75")		0.91	0.50	0.009	0.02	0.0003	0.51	0.009
Total Fibers:				0.50	0.01	0.02	0.0003	0.51	0.01
Aggregates									
A1	Poraver® (0.5-1.0 mm) Abs:	20.0\%	0.44	267.17	9.731	9.90	0.360	271.25	9.879
A2	3M S32 Glass Bubbles Abs:	1.0\%	0.32	118.59	5.939	4.39	0.220	120.40	6.030
Total Aggregates:				385.76	15.67	14.29	0.58	391.65	15.91
Water									
W1	Water for CM Hydration (W1a + W1b)		1.00	260.21	4.17	9.64	0.15	264.18	4.23
	W1a. Water from Admixtures			1.98		0.07		2.01	
	W1b. Additional Water			258.23		9.57		262.17	
W2	Water for Aggregates (SSD)		1.00	54.62		2.02		55.45	
	Total Water (W1 + W2):			314.83	4.17	11.66	0.15	319.63	4.23
Admixtures (including Pigments in Liquid Form)			\% Solids	Dosage (fl oz/cwt)	Water in Admixture ($\mathrm{lb} / \mathrm{yd}^{3}$)	Amount (fl oz)	Water in Admixture (lb)	Dosage (fl oz/cwt)	Water in Admixture (lb/yd ${ }^{3}$)
Ad3	MasterAir AE $90 \quad 8.51$	$l b / g a l$	6.00	3.00	1.98	1.16	0.072	3.05	2.01
Water from Admixtures (Wla):					1.98		0.07		2.01
Cement-Cementitious Materials Ratio				0.00		0.00		0.00	
Water-Cementitious Materials Ratio				0.25		0.25		0.25	
Slump, Slump Flow, in.				7 ± 1		8.00		8.00	
M	Mass of Concrete. lbs			1741.93		64.52		1768.50	
V	Absolute Volume of Concrete, ft^{3}			25.84		0.96		26.24	
T	Theorectical Density, $l b / f t^{3}=(M / V)$			67.41		67.39		67.39	
D	Design Density, $l b / f t^{3}=(M / 27)$			64.52					
D	Measured Density, lb/ft ${ }^{3}$					65.5		65.5	
A	Air Content, \% $=[(T-D) / T \times 100 \%]$			4.3\%		2.8\%		2.8\%	
Y	Yield, $f t^{3}=(M / D)$			27.0		0.985		27.0	
Ry	Relative Yield $\quad=\left(Y / Y_{D}\right)$					0.985			

Appendix C - Bill of Mbaterials

Material	Quantity	Unit Cost	Total Price
Cementitious Materials			
EkkoMAXX	197.55 lbs	\$0.77/lb	\$152.11
Admixtures			
MB AE 90	. 034 gal	\$7.00/gal	\$0.24
Aggregates			
Poraver Expanded Glass	50.0 lbs	\$1.76/lb	\$88.00
3M S32 Glass Bubbles	22.57 lbs	\$9.80/lb	\$221.27
Reinforcing Materials			
Post Tensioning Tendons	132 ft	\$0.14/ft	\$18.48
Parflex Nylon Tubing	108 ft	\$0.42/ft	\$45.36
Button Stoppers	18	\$0.42/each	\$7.56
Bearing Plates	6 sq. in	\$0.12/sq in	\$0.72
Parex Glass Fiber Reinforcing Mesh	105 sq. ft	\$0.18/sq. ft.	\$18.98
MasterFiber M 100	0.103 lbs	\$1.88/lb	\$0.19
Male Mold and Associated Items			
Foam Male Mold	Lump Sum	\$300.00	\$300.00
3D Elements Silicone Molds	Lump Sum	\$362.50	\$362.50
Nox-Crete Pro-Release Agent	0.5 gal .	\$9.45/gal	\$4.73
Wooden Strongback	Lump Sum	\$250.00	\$250.00
Steel Mold Stands	Lump Sum	\$100	\$100
Sealer and Stain			
Pro-Release Sealer	2 gal .	\$35.00/gal	\$70.00
Behr Concrete Stain (Solid and Translucent)	2 gal .	\$25.96/gal	\$51.92
Total Production Cost			\$1,692.06

Appendix © - Example Structural Calculation

Longitudinal Internal Stress

Assume:

- Self-weight of the canoe $\left(\mathrm{SW}_{\text {canoe }}\right)=170-\mathrm{lbs}$
- Self-weight of the paddlers $\left(\mathrm{SW}_{\text {padders }}\right)=200-\mathrm{lbs}$ each
- Canoe length $=21-\mathrm{ft}$

Determine Buoyant Force, F_{B} :

$$
F_{B}=S W_{\text {canoe }}+S W_{\text {paddlers }}=170 \mathrm{lbs}+200 \mathrm{lbs}=570 \mathrm{lbs}
$$

\therefore Water will push upwards at $570-\mathrm{lbs}$ per $21-\mathrm{ft}$ or $\mathbf{2 7 - 1 b} / \mathbf{f t}$

Find Reactions:

$$
\begin{aligned}
& \Gamma+\mathrm{M}_{\mathrm{A}}=0=(200 \mathrm{lbs})(1 \mathrm{ft})+(200 \mathrm{lbs})(20 f t) \\
& \quad-27 \frac{l b}{f t}(21 f t)(10.5 f t)+R_{B}(21 f t)
\end{aligned}
$$

$\mathrm{R}_{\mathrm{A}}=\mathrm{R}_{\mathrm{B}}=\mathbf{8 3 . 5 - \mathrm { lbs }}(\downarrow)$

Drawing Shear \& Moment Diagrams:
$\mathrm{M}_{\text {max }}=1288$-lbft or $\mathbf{1 5 4 5 6}$-lbin

Simplified Cross-Section:

$$
\begin{aligned}
& \bar{y}=\frac{\sum \mathrm{A}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}}{\sum \mathrm{~A}_{\mathrm{i}}}=\frac{(27 \mathrm{in})(0.5 \mathrm{in})(0.25 \mathrm{in})+2(12.5 \mathrm{in})(0.5 \mathrm{in})(6.75 \mathrm{in})}{(27 \mathrm{in})(0.5 \mathrm{in})+2(12.5 \mathrm{in})(0.5 \mathrm{in})}=\mathbf{3 . 3 7 5}-\mathrm{in} \\
& \begin{aligned}
I=\sum\left(\mathrm{I}_{i}+A_{i} d_{i}^{2}\right) & =\left[\frac{(0.5 \mathrm{in})^{3}(27 \mathrm{in})}{12}+(0.5 \mathrm{in})(27 \mathrm{in})(3.375 \mathrm{in}-0.25 \mathrm{in})^{2}\right] \\
& +2\left[\frac{(27 \mathrm{in})^{3}(0.5 \mathrm{in})}{12}+(0.5 \mathrm{in})(12.5 \mathrm{in})(3.375 \mathrm{in}-6.75 \mathrm{in})^{2}\right]=437.3-\mathbf{i n}^{4}
\end{aligned}
\end{aligned}
$$

- $\bar{y}=$ Centroid of cross-section
$\begin{array}{ll}\text { - } & \mathrm{I}_{\mathrm{i}}=\text { Moment of inertia }=\frac{b h^{3}}{12} \\ \text { - } & \mathrm{d}_{\mathrm{i}}=\mathrm{y}_{\mathrm{i}}-\bar{y}\end{array}$
- $A_{i}=$ Area of individual rectangular segment $\circ \mathrm{d}_{\mathrm{i}}=\mathrm{y}_{\mathrm{i}}-\bar{y}$

Flexural Formula:

$$
\text { o } y_{i}=\text { centroid of individual segment }
$$

$$
\begin{aligned}
& \sigma=\frac{M y}{I} \quad \begin{array}{lll}
\circ & \circ=\text { Normal stres } \\
\circ & \mathrm{M}=\text { Moment }
\end{array} \\
& \text { - } y=\text { Distance from centroid to stress face } \\
& \text { - } \mathrm{I}=\text { Moment of Inertia } \\
& \sigma_{\text {compression }}=\frac{(15456 \mathrm{lbin})(13 \mathrm{in}-3.75 \mathrm{in})}{437.3 \mathrm{in}^{4}}=\mathbf{3 4 0}-\boldsymbol{p s i} \\
& \sigma_{\text {tension }}=\frac{(15456 \mathrm{lbin})(3.75 \mathrm{in})}{437.3 \mathrm{in}^{4}}=\mathbf{1 1 9 - \boldsymbol { p s i }}
\end{aligned}
$$

Transverse Internal Stress

Assume:

Density of water $=62.4-\mathrm{pcf}$
$\circ \quad$ Waterline $=8.6$-in (From Prolines waterline analysis)

Find Force of Water, w:
$w=62.4 \frac{l b}{f t^{3}}\left(\frac{1 \mathrm{in}}{12 f t}\right)^{3}(8.6 \mathrm{in})(1 \mathrm{in})=\mathbf{0 . 3 1 1}-\frac{\boldsymbol{l} \boldsymbol{b}}{\boldsymbol{i n}}$
$\Gamma+\Sigma \mathrm{M}_{\mathrm{A}}=0=\left(0.311 \frac{\text { lb }}{\text { in }}\right)(8.6$ in $)(0.5)\left(\frac{1}{3}\right)(8.6$ in $)$
$M=3.83-\frac{l b i n}{i n}$

One-inch Section-Cut at A:

$I=\frac{b h^{3}}{12}=\frac{(1 \mathrm{in})(0.5 \mathrm{in})^{3}}{12}=\mathbf{0 . 0 1 0 4}-\boldsymbol{i n}^{4}$

Single Layer of Reinforcement:

Flexural Formula:
Conventional to use 0.1 (h)
$\sigma_{\text {compression }}=\frac{\left(3.83 \frac{\mathrm{lbin}}{\mathrm{in}}\right)(0.20 \mathrm{in})}{0.0104}=73.5-\boldsymbol{p s i}$
$\sigma_{\text {tension }}=\frac{\left(3.83 \frac{\text { lbin }}{\text { in }}\right)(0.25 \mathrm{in})}{0.0104 \text { in }^{4}}=\mathbf{9 2 - \boldsymbol { p s i }}$

Assume:

- Compressional Strength of Concrete, $\mathrm{f}^{\mathrm{\prime}} \mathrm{c}=2150-\mathrm{psi}$ (from concrete mix)
- Tension force, $\mathrm{T}=135-\mathrm{lb} /$ in (from mesh reinforcement testing)
- Neutral axis depth factor, $\beta_{1}=0.85$
- Strength reduction factor, $\phi=0.65$

Depth to Compression Zone, c :
$c=\frac{T}{0.85 f^{\prime} c \beta_{1} b_{w}}=\frac{\left(135 \frac{\mathrm{lb}}{\mathrm{in}}\right)(1 \mathrm{in})}{0.85(2150 \mathrm{psi})(0.85)(1 \mathrm{in})}=\mathbf{0 . 0 8 6 9}-\boldsymbol{i n}$
Nominal Flexural Capacity, ϕM_{n} :
$\emptyset M_{n}=\emptyset\left[T\left(d-\frac{\beta_{1} c}{2}\right]=0.65\left[135\right.\right.$ lbs $\left(0.375\right.$ in $\left.-\frac{0.85(0.0869 \mathrm{in})}{2}\right]=\mathbf{2 9 . 6}-\frac{\boldsymbol{l b i n}}{\boldsymbol{i n}}$
$\emptyset M_{n} \gg M \quad$ Factor of Safety ≈ 7.5

